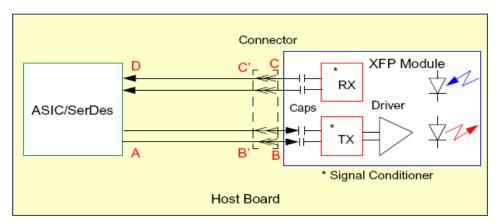


ontaira XFP-10G-S80 10G Ethernet XFP Transceiver

XFP, LC Connector, 1550nm Uncooled EML with APD Receiver, Single Mode, 80KM



Applications

- SONET(OC-192)/SDH(STM64) line card 10GBASE-ZR (10.3125Gbps)
- 10GBASE-ZW (9.953Gbps) .
- 10GE Ethernet switches and routers ٠
- 10GE Storage

Features

- 10Gb/s serial optical interface compliant to • 802.3ae, 10GBASE ZR/ZW
- 1550nm cooled EML transmitter with TEC, . APD photo-detector
- XFP Mechanical interface with bail latch and • hot pluggable
- XFI High Speed Electrical Interface
- 2-wire interface for management and digital diagnostic monitor
- Operating case temperature: 0 to 70 °C
- All-metal housing for superior EMI • performance
- Advanced firmware allow customer system encryption information to be stored in transceiver
- RoHS compliant
- No reference clock needed

Figure 1: Interface to Host

General Description

The XFP-10G-S80 is a very compact 10Gb/s optical transceiver module for serial optical communication applications at 10Gb/s. The XFP-10G-S80 converts a 10Gb/s serial electrical data stream to 10Gb/s optical output signal and a 10Gb/s optical input signal to 10Gb/s serial electrical data streams. The high speed 10Gb/s electrical interface is fully compliant with XFI specification and allows FR4 host PCB trace up to 200mm.

The XFP-10G-S80 is designed for use in a variety of 10Gb/s SONET/SDH equipment including FEC (9.95Gb/s to 10.7Gb/s) and Ethernet LAN (10.3Gb/s) and WAN (9.95Gb/s) applications. The high performance cooled 1550nm EML transmitter and high sensitivity APD receiver provide superior performance for SONET/SDH and Ethernet applications at up to 80km links. The fully XFP compliant form factor provides hot pluggability easy optical port upgrades and low EMI emission.

Functional Description

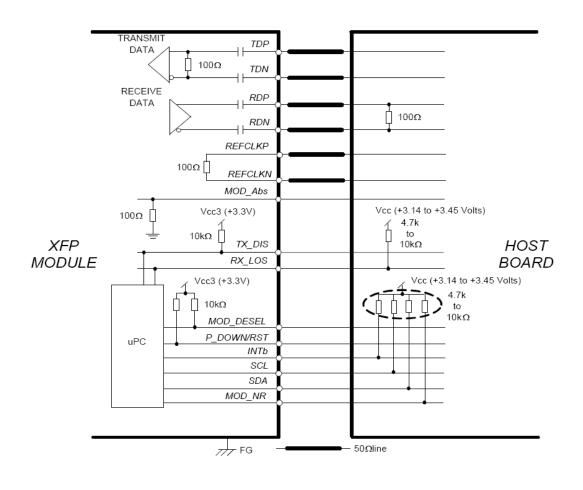
The XFP-10G-S80 contains a duplex LC connector for the optical interface and a 30-pin connector for the electrical interface. Chart of section 3 shows the functional block diagram of XFP-10G-S80 XFP Transceiver.

Transmitter Operation

The transceiver module receives 10Gb/s electrical data and transmits the data as an optical signal. The transmitter contains a Clock Data Recovery (CDR) circuit that reduces the jitter of received signal and reshapes the electrical signal before the electrical to optical (E-O) conversion. The optical output power is maintained constant by an automatic power control (APC) circuit. The transmitter output can be turned off by TX disable signal, at TX_DIS pin. When TX_DIS is asserted high, the transmitter is turned off.

Receiver Operation

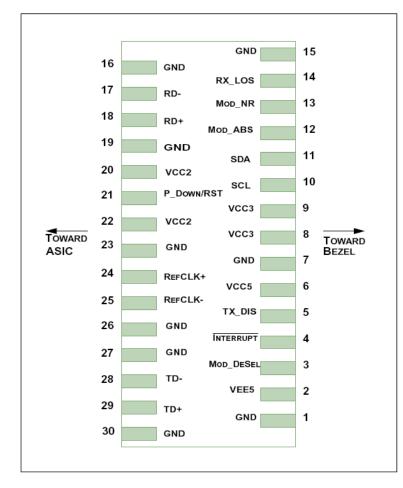
The received optical signal is converted to serial electrical data signal. The optical receiver contains a CDR circuits that reshapes and retimes an electrical signal before sending out to the XFI channel (i.e. XFP connector and high speed signal traces). The RX_LOS signal indicates insufficient optical power for reliable signal reception at the receiver.


Page 2 of 10

Management Interface

A 2-wire interface (SCL, SDA) is used for serial ID, digital diagnostics and other control /monitor functions. The address of XFP transceiver is 1010000x. MOD_DESEL signal can be used in order to support multiple XFP modules on the same 2-wire interface bus. Interface is compliant to XFP MSA.

Recommended Electrical Interface to Host



PIN DEFINITION

The XFP modules are hot-pluggable. Hot pluggable refers to plugging in or unplugging a module while the host board is powered. The XFP host connector is based on a 0.8 mm pitch 30 position right angle connector. Host PCB pin assignment is given by Figure 2 and pin definition are listed in Table 2. All XFP compliance points are defined using this connector. An improved version of this connector will be available from Tyco and possibly from other sources. It is recommended that host systems use the new improved connector for better signal integrity and EMI.

Interface to Host PCB

Pin Descriptions

Pin#	Name	Logic	Description	Note	
1	GND		Module Ground	1	
2	VEE5		-5.2V Power Supply , not in use		
3	MOD DESEL	LVTTL-I	Module De-select; When held Low allows module to respond to 2-wire serial		
5	MOD_DESEE		interface		
			Indicates presence of an important condition, which can be read over the		
4	INTERRUPTb	LVTTL-O	2-wire serial interface. This pin is an open collector output and must be pulled	2	
			up to host_Vcc on the host board.		
5 TX DIS		LVTTL-I	Transmitter Disable; When asserted High, transmitter output is turned off.		
			This pin is pulled up to VCC3 in the module		
6	VCC5		+5V Power Supply		
7	GND		Module Ground	1	
8	VCC3		+3.3V Power Supply		
9	VCC3		+3.3V Power Supply		
10	SCL	I/O	2-wire serial interface clock. Host shall resistor connected to host_Vcc of	2	
10			+3.3V.		
11	SDA	I/O	2-wire serial interface data. Host shall use a pull-up resistor connected to	2	
II SDA		1/O	host_Vcc of +3.3V.		
12	12 MOD_ABS LVTTL-O		Indicates Module is not present. Host shall pull up this pin, and grounded		
12	MOD_ADO	EVITE O	the module. "High" when the XFP module is absent from a host board.	2	
13	MOD NR	LVTTL-O	Module not ready; When High, Indicates Module Operational Fault. This pin		
10		EVITE-0	is an open collector and must be pulled to host_Vcc on the host board.	2,3,4	
			Receiver Loss of Signal; When high, indicates insufficient optical input		
14	RX_LOS	LVTTL-O	power to the module. This pin is an open collector and must be pulled to	2	
			host_Vcc on the host board.		
15	GND		Module Ground		
16	GND		Module Ground		
17	RDN	CML-O	Receiver Inverted Data Output; AC coupled inside the module.		
18	RDP	CML-O	Receiver Non-Inverted Data Output; AC coupled in side the module.		
19	GND		Module Ground	1	
20	VCC2		+1.8V Power Supply, not in use		

Page 5 of 10

Pin#	Name	Logic	Description	Note
			Power down; When High, module is limited power mode. Low for normal	
21	P_DOWN/RST	LVTTL-I	operation. Reset; The falling edge indicates complete reset of the module.	
			This pin is pulled up to VCC3 in the module.	
22	VCC2		+1.8V Power Supply, not in use	
23	GND		Module Ground	1
24	REFCLKP	PECL-I	Reference clock Non-Inverted Input; not in use	
25	REFCLKN	PECL-I	Reference clock Inverted Input; not in use	
26	GND		Module Ground	1
27	GND		Module Ground	1
28	TDN	CML-I	Transmitter Inverted Data Input; AC coupled inside the module.	
29	TDP	CML-I	Transmitter Non-Inverted Data Input; AC coupled inside the module.	
30	GND		Module Ground	1

*Notes: 1. Module ground pins are isolated from the module case and chassis ground within the module.

- 2. Shall be pulled up with 4.7k to 10k ohm to a voltage between 3.15V and 3.45V on the host board.
- 3. Response time: typ. 20msec (XFP MSA Rev. 4.5 ${\leq}\,$ 1msec)
- 4. MOD_NR = (TX LOL) OR (RX LOL).

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	Tst	-40	85	degC	
Relative Humidity (non-condensation)	RH	-	85	%	
Operating Case Temperature	Торс	0	70	degC	1
Supply Voltage #3	VCC3	-0.5	3.6	V	
Supply Voltage #5	VCC3	-0.5	6.0	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC3+0.5	V	
LVTTL Output Current	lolvttl	-	15	mA	
Voltage on Open Collector Output	Voco	0	6	V	
Receiver Input Optical Power(Average)	Мір	-	-7	dBm	2

*Notes: 1. Ta: -10 to 60degC with 1.5m/s airflow with an additional heat sink.

2. APD Receiver.

Recommended Operating Conditions and Supply Requirements

Parameters	Symbol	Min	Мах	Unit
Operating Case Temperature	Торс	0	70	degC
Relative Humidity (non-condensing)	Rhop	-	85	%
Main Power Supply Voltage #3	VCC3	3.13	3.45	V
Main Power Supply Current #3	ICC3	-	750	mA
Power Supply Voltage #5	VCC5	4.75	5.25	V
Power Supply Current #5	ICC5	-	300	mA
Total Power Consumption	Pd	-	3.5	W

Low Speed Control and Alarm Signals Electrical Interface

Parameters	Symbol	Min	Мах	Units	Note
VED Interrupt Med ND BY LOS	Vol	0.0	0.4	v	1
XFP Interrupt, Mod_NR, RX_LOS	Voh	Vcc-0.5	Vcc+0.3	v	2
	Vil	-0.3	0.8	v	3
XFP TX_DIS, P_DOWN/RST	Vih	2.0	VCC3+0.3	v	4
VED SOL and SDA Output	Vol	0.0	0.4	v	1
XFP SCL and SDA Output	Voh	Vcc-0.5	Vcc+0.3	v	2
VED COL and CDA Input	Vil	-0.3	VCC3*0.3	v	5
XFP SCL and SDA Input	Vih	VCC3*0.7	VCC3+0.5	v	6
Capacitance for XFP SCL and SDA I/O pin	Ci	-	14	pF	
Total hus conspiritive load for SCL and SDA	Cb	-	100	pF	7
Total bus capacitive load for SCL and SDA	00		400	pF	8

*Notes: 1. Pull-up resistor must be connected to host_Vcc on the host board. lol(max)=3mA

2. Pull-up resistor must be connected to host_Vcc on the host board.

3. Pull-up resistor connected to VCC3 within XFP module. $Iil(max)=-10\mu A$.

4. Pull-up resistor connected to VCC3 within XFP module. lih(max)= 10μ A.

5. Pull-up resistor must be connected to host_Vcc on the host board. Iol(max)= -10 $\mu A.$

antaira

6. Pull-up resistor must be connected to host_Vcc on the host board. lol(max)= 10µA.

- 7. At 400KHz, 3.0kohms, at 100kHz 8.0kohms max.
- 8. At 400KHz, 0.8kohms, at 100kHz 2.0kohms max.

Page 7 of 10

Optical Interface

Transmitter Optical Interface							
Parameter	Symbol	Min	Typical	Max	Unit	Note	
Operating Data Rate	-	9.95		10.70	Gb/s	1	
Output Center Wavelength	ltc	1530	1550	1565	nm		
SMSR	SMSR	30		-	dB		
Average Output Power	Po	0		+4	dBm	2	
Disabled Power	Poff	-		-30	dBm	2	
Extinction Ratio	ER	9	10	-	dB	2	
Eye Mask 1 (SONET/SDH)		GR-253	-CORE/ITU-T (G.691		2	
Eye Mask 2 (10G Ethernet)		I	EEE802.3ae			3	
Generation Jitter 1 (20kHz - 80MHz)		-		0.15	Ulp-p	2,4	
Generation Jitter 2 (4MHz - 80MHz)		-		0.1	Ulp-p	2,4	
RIN	RIN	-		-130	dB/Hz		
	Rece	eiver Optical In	terface				
Parameter	Symbol	Min	Typical	Max	Unit	Note	
Operating Data Rate	-	9.95		10.70	Gb/s	1	
Input Center Wavelength	Irc	1260		1600	nm		
Overload	Rovl	-7		-	dBm		
Minimum Sensitivity	Pmin	-	-	-24	dBm	2	
RX_LOS Assert Level	RLOSa	-35			dBm		
RX_LOS Deassert Level	RLOSd			-30	dBm		
RX_LOS Hysteresis	RLOSh	1		5	dB		
Optical Path Penalty	PN	-		2	dB	1	
Optical Return Loss	ORL	27		-	dB		
Jitter Tolerance	JTL	GR-253	B-CORE/ITU-T	G.783			

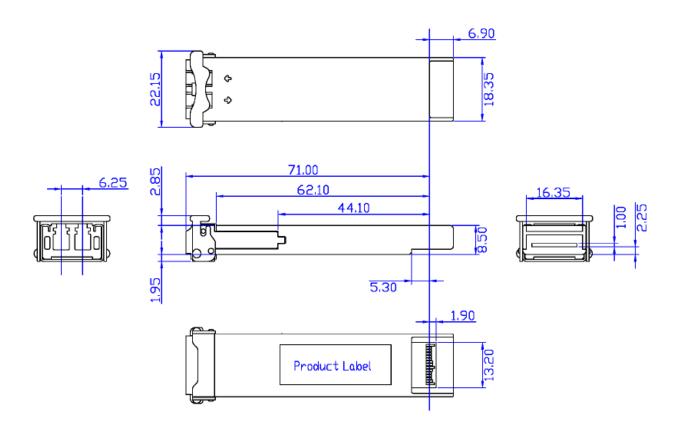
antaira

*Notes: 1. Data rate tolerance

- SONET ,10GBASE-ZW:typ.+/-20ppm

- 10GBASE-ZR: typ.+/-100ppm

2. Measured at 10.3125Gbps,Non-framed PRBS2^31-1,NRZ

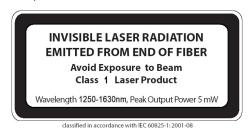

3. Measured by using XFP evaluation board.

Page 8 of 10

Ontaira[®] XFP-10G-S80 10G Ethernet XFP Transceiver

Mechanical Dimensions

Intaina[™] XFP-10G-S80 10G Ethernet XFP Transceiver


ESD

This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Safety Information

- All versions of this laser are Class 1 laser products per IEC* 60825-1:2001. Users should observe safety precautions such as those recommended by ANSI** Z136.1-2000, ANSI Z36.2-1997 and IEC 60825-1:2001.
- Caution: use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

*IEC is a registered trademark of the International Electrotechnical Commission **ANSI is a registered trademark of the American National Standards Institute

Assured Systems

Assured Systems is a leading technology company with over 1,500 regular clients in 80 countries, deploying over 85,000 systems to a diverse customer base in 12 years of business. We offer high-quality and innovative rugged computing, display, networking and data collection solutions to the embedded, industrial, and digital-out-of-home market sectors.

US

sales@assured-systems.com

Sales: +1 347 719 4508 Support: +1 347 719 4508

1309 Coffeen Ave Ste 1200 Sheridan WY 82801 USA

EMEA

sales@assured-systems.com

Sales: +44 (0)1785 879 050 Support: +44 (0)1785 879 050

Unit A5 Douglas Park Stone Business Park Stone ST15 0YJ United Kingdom

VAT Number: 120 9546 28 Business Registration Number: 07699660